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As part of an investigation of flow induced cavity resonance,
experimental studies have been carried out, both in air and water, on
systems of coupled cavities (ie cavities connected by a common opening).
The work was performed with the aim of examining the effects on sound
transmission between cavities, of parameters such as wall flexibility,
fluid viscosity and the size of operning connecting the cavities.
Theoretical models have been developed to describe the acoustic
behaviour of the cavity systems studied, and good agreement is obtained
It is concluded that, for most practical
applications, the effect of viscosity on sound transmission between
resonating cavities is negligilie.
however, a dominating factor whose effects are particularly noticeable
when the fluid medium is waterT<:

Flexibility of the boundaries is,
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INTRODUCTION

A number of experimental studies have recently been carried out at AMTE
Teddington on the topic of flow induced cavity resonance (see, for example,
Reference 1). In parallel with this work, interest has arisen in the acoustic
behaviour of systems of coupled cavities since, in some cases of practical
interest, resonance excited by an external flow may occur in a complex
structure containing many interconnected chambers, rather than a single cavity.
The aim of the study described in this report is to estimate the effects of
various parameters, such as viscous damping and wall flexibility, on the
acoustic transmigsion between coupled cavities. This has been accomplished by
two separate experimental studies, with corresponding theoretical modelling.
The first study, aimed at investigating the effect of viscous damping, was
carried out in air. In this case the cavity walls can be regarded as
acoustically rigid. The simple geometry of the system, which is described in
detail in the following section, permits an exact solution of the reduced
wave equation in the form of an eigenfunction expansion. This theoretical
model is valid over a fairly wide range of frequencies. The second study was
carried out with water as the fluid medium,using a more complicated system of
cavities with non-rigid walls. Eigenfunction expansion techniques could not
be used for the theoretical description of this system, so a much simpler
model, valid only at low frequencies, was developed to describe its acoustic
behaviour. The simplified approach may also be used to describe the
behaviour of the rigid walled cavity system at low frequencies.

It is possible to analyse systems of coupled cavities using finite
element methods, but this analysis can be very complex even for relatively
simple systems. Fahmy [2] has used the finite element technique to study the
behaviour of two cavities coupled via a common opening and has obtained good
agreement with experimental results. However, his analysis is restricted to
the case of acoustically hard walls, which is unrealistic in underwater
applications. The approach adopted by Fahmy could be generalised to cope with
nou-rigid boundaries, but the computational effort required was felt not to be
worthwhile for the purposes of the present study. The aim of the theoretical
models described here is to quantify the relative importance of various
parameters and to provide physical understanding of the observed experimental
results. This can best be achieved with relatively simple mathematical models,
even though their range of validity may be somewhat restricted in comparison
with more sophisticated techniques. Details of both experimental and
theoretical results are presented and discussed in the following pages.

2o RIGID WALLED CAVITY SYSTEM
(a) Experiment

The experiments described in this section were carried out in the
anechoic chamber at AMTE Teddington. The rig is illustrated in Figure 1
below.
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FIGURE 1 ILLUSTRATION OF CYLINDRICAL CAVITY SYSTEM TESTED IN
ANECHOIC CHAMBER

The cavity consists of a cylindrical steel tube of 11.4 cm internal
diameter having a flanged opening at one end over which can be fitted any
one of a number of wooden lids, 0.6 cm thick, containing circular openings
of various diameters. The cylinder has a moveable base whose height can
be adjusted to vary the length of the cavity. The maximum length
attainable is 63.6 cm. Any one of a number of circular wooden plates,
containing circular concentric holes of various diameters, can be inserted
into the cylinder as shown above to create a two-cavity system. The
diameters of the holes in both the lids and the internal plates range from
0.2 cm to 8 cm.

The external excitation of the system was provided by an electrostatic
loudspeaker suspended above the cavity, driven by an oscillator producing
a sinusoidal tone of variable frequency. Sound pressure levels (SPls)
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ingide the cavity were measured by probe microphones as shown in Figure 1.
These could be placed at any of four axial positions via openings in the
tube wall, numbered 1 to 4 in the diagram. Each opeuing was blanked off
when not in use. The heights of the openings relative to the lower end of
the cylinder (BB'in Figure 1) are given in Table 1 below.

Probe position Height above lower
(Fig 1) end (cm)
1 56.2
2 37.6
3 19.0
L 6.6

TABLE 1 Probe Microphone Positions

Two probe microphones were used in the experiments, enabling the response
to be measured at two positions simultaneously. Not all four positions
vwere used for each configuration studied, although this was done in a few
cases. The SPL external to the cavity was measured by a 3 inch microphone
placed in the plane of the lid, 18 cm from the central axis. No
measurements were made at frequencies above 1kHz because interest was
centred on the first few resonant frequencies of the system, these being
the ones which would be most easily excited by an external flow. In most
cases the measurements were confined to the range 50 to 700Hz. No
measurements were made below S0Hz because of the low efficiency of the
loudspeaker at low frequencies and the absence of anechoic conditions in
the chamber for long acoustic wavelengths.

Three cavity configurations were examined. These were:
i) No internal plate (ie single cavity), cavity length = 63.6 cam.
ii) No internal plate, cavity length = 32.0 cm.

iii) Internal plate giving L, = upper cavity length = 31.9 cm, and
LZ = lower cavity length = 31.1 cm.

Several opening diameters were investigated with each of the above three
configurations. The measurement procedure was-as follows. A discrete
frequency was chosen and set up on the oscillator, the level being
adjusted until the external microphone gave an output corresponding to a
reference acoustic pressure of 120dB re 1 pPa. The corresponding SPls

at the internal microphones were then recorded. This procedure was
repeated for a range of discrete frequencies, thus building up a frequency
response in the range of interest. Small steps in frequency were taken
near resonances of the system, where the SPL measured by the probe
microphones was changing rapidly with frequency.

Before proceeding to a discussion of the experimental results a
description is given of the theoretical modelling of the system.
Experimental and theoretical results are then presented together in
section 2 (¢).
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(b) Theoretical Model
i) Formulation.
In constructing a mathematical model of the system a more general

geometry has been considered, with allowance for upper and lower
cavities having different diameters as shown in Figure 2.

plane wave excitation
l» upper opening, radius b1

{¢———__ upper cavity,

¢s ¢. L,, radius a,
lowef opening, I
¢ - ¢z radius b2 1'..2 —— lower cavity,
radius az

FIGURE 2 GEOMETRY OF THEORETICAL MODEL

A cylindrical polar coordinate system is used, with the origin
at the centre of the lower opening. Thus the upper opening is at
z = L1. the lower opening at z = O and the base of the lower cavity

at z = ‘Lé' The notation is as follows:

radius of cylinder
radius of opening
sound speed
frequency (Hz)

wave number = w/c
damping parameter
cavity length

mass of fluid in opening
acoustic pressure
radial coordinate
time

axial coordinate
kinematic viscosity
density

thickness of opening
velocity potential
radian frequency
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Subscripts 1 and 2 refer to the upper and lower cavities respectively.
Subscript O refers to the external excitation, assumed to be a plane
wave of velocity amplitude u,- Thus the driving wave is described by
the velocity potential

4 = ;‘t—eeu‘(‘t*z"‘)_ (2.1

Inside each cavity it is required to find a solution of the Helmholtz

equation,
(Vi+K) ¢ =0, (2.2)

subject to the appropriate boundary conditions. Since the walls are
all rigid we may write

.g_é = Qon r=a, (270) andon = &Z(Z<O);

_g_g-_-o at z=4, (for b'<f'\<a|))
(2.3)

at zg o"’(for bz< rg d,)) at 2= O-.( for bz< r\(a,z)

and at 2= —4, ( forrsa,)

It remains to write appropriate boundary conditions for the motions

in the openings at z = L,' and z = O. In each opening the motion is

assumed to be that of a rigid piston oscillating with frequency w,

Consider first the upper opening. Some of the input energy is lost

from this opening to the external fluid via radiation. The external
fluid also has a reactive effect due to its mass. These effects may
be combined in the form of a specific acoustic impedance, 8+ (X, .
That is, if a motion in the mouth with acoustic velocity u, induces

a mean acoustic pressure p’ just outside the opening, we wgite

)
{.. = Pc(6,+iX)), (24)

Expressions for the resistance and reactance terms, ©, and X, ’
are obtained on the assumption that the motion in the opening is
that of a piston in an open-ended tube with no baffle. (It can be
seen from Figure 1 that the lid of the cavity is in fact a baffle,
but its size is less than the wavelengths of interest, so its
effect has been ignored). For low frequencies (fAb, << ))

X, and O, are given [3] by ’

x,= 2 (kb)) , 0= L(Ab) (2.5)

Now the velocity u, is simply the mean value of b¢, / dZ at z = L1 ’
averaged over the aouth area. Denoting this average by an overbar,
the total mean acoustic pressure just outside the upper opening is

given by
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) :
P.u.g = driving pressure + P

= =PLley, +/c(6,+iX,) g.g; ,  (2:6)

where it is understood that all quantities vary as elwt. The mean

pressure just inside the opening is given by

P = -/;—?a = '—/oiw;‘_ (2.7)

The equation of motion of the fluid mass M1 in the upper opening is
now written as

Mags X acceleration = nett pressure force - viscous damping force.

It can be shown [4] that the viscous damping term is proportional
to Au,Jyw , where V is the kinematic viscosity. Hence we may
write

d - —
M, .ﬁl = A(F - Pue) - KA, LPe,fyw, (28

where A, is the mouth area and K is a parameter dependent on the
geometry of the opening, whose value is discussed later.

S . .
ince dy, = low, = w d ,

2
the above equation may be written in the form

[(xl"'*_c') - £(93+ KJIR';L)J ':-z;: + & E =U,, (2.9)

where T, is the effective opening thickness = M_/( A ), and
R=a,¢c/p. The dimensionless parameter R is analogous to a
Reynoids number, but it involves the sound speed rather than a
characteristic flow speed. Equation (2.9) represents the boundary
condition to be applied at the upper opening. That is, at z = L1,

osrghb,.

In the same way an equation can be written for the motion of
the mass in the lower-opening. With similar notation, this takes
the form

M"% = A2 (7 -P) -KA P vw, (2.10)

In this equation P, and P, refer to the mean acoustic pressures
below and above thg opening at z = O. When expressed in terms of
the velocity potentials, (2.10) takes the form

e /] A w0, o




-
’

U‘.'.";

DASAONS: ™ RS

o 4 rr

) 2t
" .

vy

D P
B R theit!
GOl e el

i ‘J

R e S A A L AL At i el wTTeTwr
. - . . e e e R it Chd T T T T T T T T N T W T ¥ W e W -

This is the boundary condition at z = O for 0 rr€ b, , together
with the condition 00, /0z = ¥f oz = Wa . _ The velocities

u, and u, are to be determined as part of the solution.

It should be noted that the thicknesses of the 1id and the
internal plate have been ignored in this formulation except in the
allowance for non-zero effective mouth thicknesses at z = 0 and
z = L,. Also,viscous losses are assumed to occur only at the
openiAgs. That is, energy dissipation within the cavities has been
neglected.

ii) Solution.

The solution of the Helmholtz equation is now written, for
each cavity, as a sum of eigenfunctions. In the upper cavity we
write

$=¢= 3 [Aeg @)1+ BLh @] T (5 %) >

where the §, are the roots of J, (%)= O and the functions Sin?
h,a, are sinusoidal or exponential depending on whether Rq >$n
or 4.<5a° That is !

cos(uoz/a,), ha,3 §,

Fnlz) = exp(-pmoz/a,) ha,< §,

(2.13)

e [Fnlaeala), hos s,
" exp wz/a.>,_Aq,< $a

where A = |g: - (£Q|)1| '/’:

The change from exponential to sinusoidal behaviour as ‘ko.,
increases reflects the well-known fact that the propagation of duct
modes is frequency dependent. Since §, = O the plane wave,
independent of r~, always propagates (independently of frequency)
in a hard walled tube, but the second and higher modes do not
become '"cut on' unless the frequency is sufficiently high. The
second mode begins to propagate for RQ&,> 3.83, which is the
first non-zero root of 3;'(;) = O. In the present case, with a, =
5.7 cm, this corresponds to a frequency of about 3.6 kHz which is
well above the rangeof interest. The solution given by (2.12) is
valid in 0€2g4£,, osrsa,. The determination of the
coefficients Ap and By, which are chosen to satisfy the boundary
conditions at z = O and 2z = L1, is given later in this section.

The form of solution given by equation (2.12)is axisymmetric,
ignoring any variation with the circumferential angle 6. A more
general solution could be written involving terms of the form eimd
and the higher order Bessel functions Jm . However, the
experimental rig described previously is axisymmetric, so the
general solution is not used here.

The solution for s valid in the lower cavity, has a similar
form to that given above“for §, . Since 34f2=0atz =L, &
1 2 2
may be written as
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¢1 = Z Co2anl®) T, (a_':z fn) , (2.14)
n=)

cos [74 (24“:)/4:]) Aa,} $u

coshlg,(z+s,)/a.], 'Aaz<5n(2i15)

where 3111 (z) =

/2

and Do = Ig: - (4 az)z

It remains to choose Ay, B, and Cn to satisfy the remaining
boundary conditions. It has been assumed that the fluid particles
in each opening vibrate as a rigid piston, so the acoustic
velocities at 2 = 0 and 2 = L1 are written as

)_¢! = {\L' , F< b )

az Zs" O ’ r>bl

}¢. P a2 - { |.L1, rg bﬂ. ] (2.16)
Yz, _, 3z 1, _, 0, "r>b,

A result from the theory of Hankel transforms [5] states that, if
£(r) is a function defined in 0€r<a , with §'(a)= 0, then
£(r) can be written as

Qo

$r) = 22 F T (£84)

2 > -
where Fn = m)lrf(f‘) e (-a':gn) dr

29,

Defining f(l") = 3

z=4, 35 it is seen that

bl
Augl )+ B (1) = s [ru T (E5.) 4

2('?\"7)“\ J, (%5,\)
¢, T.2(5.) ' (2.17)
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Similarly, consideration of conditions at z = O gives two further

equations, namely
2( %), 7(325.)

An / ' n,h‘\:l (0’) = o
J.l0)+8 : T5.) (2.18)
b b
{ = ul T = gm
and Cn}m(O) = 2{ a") ‘ ( T2 ) (2.19)

£, 7.°(s.)

Consider now the boundary conditions (2.9) and (2.11), which are
averaged over the mouth areas. Defining

O(=x,+/é‘C, R P=9|+K/é£" )

equation (2.9) becomes

W,. . (2.20)

b,
(X-ip)w, + T—r%;J;Zwr;é.aLr

Similarly, with ¥=RT, and §= K»/ZQ,/R,(am) becomes

A (7
(¥-i8)u, + T?Ez‘[Zﬁr'(%-sé,)d.r' = 0. (a.21)

Using the expressions given earlier for ¢% and ¢%, equations (2.17)
to (2.21) may be solved to give Ap , B,y Cp » u,and u,, thus
completing the solution. The appropriate expressions age given in

the Appendix.

With all coefficients determined the velocity potential, and
hence the acoustic pressure, may be found at any point in either
cavity as a function of frequency. The coefficients are of course
frequency dependent, so a separate computation must be performed for
each frequency of interest. Dimensionless velocity potential and
acoustic pressure are defined by

$F =2 , p=-_t .

o, U, Pc u, (2.22)

The SPL at any point inside a cavity, in relation to the driving
pressure p , is then given by

SPL = 20 chm[(ﬂa.)‘ 9’5\(’12)'] . (2.23)
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It remains to correct this expression to allow for the fact that the
pressure measured by the external microphone, shown in Figure 1, is
not equal to the plane wave driving pressure p , but also contains a
component due to radiation from the upper opengng. This component
is calculated on the assumption that the opening radiates as though
it were the open end of an unbaffled tube. That is, the motion in
the mouth with velocity u, is regarded [3] as the sum of a dlpole
and a piston in an infinite baffle, each having velocity % u,, as
sketched in Figure 3 below.

Piston Dipole

Ty, Tau.- f

T [rtw

FIGURE 3 MODELLING OF MOTION IN UPPER MOUTH

Above the opening the piston and dipole components add to give a
motion of amplitude u_,, while beneath the opening the components
cancel, thus ensuring no radiation from below the mouth. The dipole
component produces no radiation in the plane of the lid, so the
signal received at the external microphone is that which would be,
produced by a piston in an infinite baffle, having velocity 3 u e
The radiation pattern due to such a motion is well known [4] ,

and for &b << ] the pressure at distance R from the centre of
the opening is given approximately by

1wt

iPwbluw,  (wt-4R)
P(R) = ' 4-R‘ e i (2.24)

Hence, ignoring the elm term, the total acoustic pressurep at
the external mierophone is given by E

LPwbiu, ,- kR
PE(R) = P + :’;&,u. = ’

which in dimensionless terms becomes

P = = | - @4.)(’5’1‘;)1(% G'JR (2.25)
4 (R/a,

The relative pressure between an internal point and the external
microphone position is then given by

SPL = 20y, [Ra ﬁl] - ZOIV,OIIF\’A : (2.26)
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A number of approximations have been made which give rise to
uncertainty in the prediction of SPL from the above equation.
Firstly, the motion has been assumed uniform over the mouth area,
and secondly the effect of the finite size of the lid has been
ignored. These approximations cause 1naccurac1es. both in the
expression for p. and in the values of and 9 given in equation
(2.5). The reacfance X, is given by (2. §) as Z(Ab )/-rr, which is
approprlate to an open-ended tube with no baffle. Its true value
is expected to lie somewhere between this value and 8@&
which is the value appropriate to an infinite baffle. These two
extreme values differ by 33%, and although a variation of this
order can have a significant effect on predicted absolute sound
pressure levels (typically of up to about 3dB at resonance), the
predictions of relative acoustic pressure between coupled cavities
are unaltered. The same is true of variations in the value of the
radiation resistance §.. This point is discussed further in
Section 2(d). Similarly, an error in the correction term in (2.25)
cannot affect relative SPLs. Since R/a _ = 3.15 (R = 18 cm), and

a, £ 1 for frequencies below 1kHz, the correction term is
negizglble for most frequencies, although it can become significant
in the immediate vicinity of resonance, when |U;/W,| is large.
Thus the main errors are expected to occur in the prediction of
absolute SPL at resonance rather than in relative SPle within the
cavities.

The energy losses due to radiation and viscosity can be written
in terms of the acoustic velocities v, and u_, at the upper and lower
openings. Consideration of the energy balange in the system leads
to the expression

Lreh u, Talh) = £, [c6 +K/vw]|u)
(2.27)

+ 4K ARG |y

The left-hand :.de of the above is the nett rate of input of energy
to the system by the driving wave, and the two terms on the right
represent the rates of energy loss at the upper and lower openings.
The loss at the upper opening is the sum of a viscous loss and a
radiation loss, while the loss at the lower opening is purely
viscous. In order to calculate the system response some estimate
must be made of the value of K. A study of the mouth impedance of
a Helmholtz resonator has been carried out by Hersh and Walker [6],
who give the following expression for a cylindrical cavity exposed
to a small amplitude driving pressure:

§-4(T/d) ’
| + 3(1—_/0() (2.28)

where d = mouth diameter (= 2b in the present notation)
and Te= effective mouth thickness, given by

0-85 d
Te=T + 15 0-625(d/D)
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Here D is the cavity diameter. The above expression was derived by
Hersh and Walker from experimental data measured in the range

0.035 £ €t/d £ 0.287, 0.093 € d/D< 0.187. Some of the
present experiments were carried out with T/d and 4 /D outside
these ranges, so exact agreement with equation (2.28) cannot be
expected. A further discrepancy arises from the fact that some of
the present measurements correspond to excitation amplitudes outside
the strictly linear regime as defined by Hersh and Walker, who state
that the effect of nonlinearity is to increase the effective value
of K. Hence the present results are expected to correspond to a
damping parameter K greater than or equal tothe value given by
(2.28). A detailed discussion of the experimental results, including
their dependence on the damping parameter, is given in the following
section.

c¢) Comparison of Theory and Experiment.

i) Single Cavity. Before discussing the behaviour of coupled
cavities it is instructive to consider some of the results
obtained for the relatively simple case of a single cavity.

Two single-cavity lengths were examined, with L, = 63.6 cm

and 32.0 cme A number of mouth radii were triea in each case.
Typical experimental results are presented below and are
compared with theoretical predictions. Tables 2 and 3 show
measured and predicted resonant frequencies in the single-cavity
cases, for a number of mouth radii.

b b1/'a1 f. (Hz) £, (Hz) f3 (Hz) £, (Hz)

(cm) Expt Theory | Expt Theory|Expt Theory|Expt Theory

2.5 | 0.437 | 107 108 325 336 | 582 583 | 841 840
0.75 | 0.131 62 64 286 287 | 547 s47 | 813 814
0.25 | 0.0Lk - ' 3 272 273 | 539 540 | 808 810

TABLE 2 Experimental and Theoretical Values of First Four
Resonant Frequencies for Single Cavity with L1 = 63.6 cm.

b, b1/'a1 f, (Hz) f2 (Hz)

(cm) Expt Theory | Expt Theory

1.5 0.262 139 142 574 580
0.5 0.087 69 74 544 545
0.25 | 0.044 - 43 | 533 539

TABLE 3 Experimental and Theoretical Values of First Two Resonant
Frequencies for Single Cavity with L1 = 32.0 cm.
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The lowest resonant frequency (f,) was not measured with
b1 = 0.25 cm, since measurements were made only above 50Hz.
Agreement between theory and experiment is seen to be very
good. There is a tendency to slightly over-predict the resonant
frequencies, but the errors are small, particularly for the
longer of the two cavities. Measurements of internal SPL were
made at all four microphone positions for the case L, = 63.6 cm,
b, = 0.75 cm. For this case the relative sound pressure level
between microphone positions 1 and 4 (as defined in Table 1) is
plotted against frequency in Figure 7. Four frequency ranges
were covered, chosen to include the first four resonant
frequencies. Good agreement is again obtained between measured
and predicted values, but the experimental values tend to vary
rather erratically in the immediate neighbourhoods of the
second, third and fourth resonances. This points to a degree
of inaccuracy in the measurements very close to resonance, which
can be attributed to the fact that the resonances were very
sharply tuned, each of the measured SPL values varying rapidly
with frequency near resonance. In Figure 7, and throughout this
section, the notation p,, .., P, is used to denote the SPls
measured at the four 1n@ernal mlcrophone positions.

Typical predictions of the variation of cavity pressure
with frequency are plotted in Figures 8 and 9, where p /b and
aéb are given as functions of frequency, in the range 58 to
7 Hg,for the shorter cavity (L, = 32 e¢m) with b, = 1.5 cm and

0.5 cm. Here p_, is the reference pressure at the external
microphone. In these cases internal measurements could be made
only at positions 1 and 2, since the movable base is above the
level of position 3 when L, = 32 cm. Agreement with the
measured values is seen to be fairly good over most of the
frequency range examined. In predicting the system response
for these cases the value of the damping parameter K was found
from equation (2.28). The effective values of K are evidently
greater than (2.28) predicts since the theoretical maximum
system response at resonance is consistently over-predicted.
The discrepancy is particularly marked at the second resonance
in Figure 9, indicating a much higher effective value of K than
the figure of 4.52 found from (2.28). There are a number of
reasons for the lack of agreement. It has already been remarked
that the approximate treatment of the motion in the mouth gives
rise to uncertainty in the predictions, which can be important
near resonance. In addition equation (2.28) is strictly meant
to apply only to a Helmholtz resonator, so it may not be valid
for higher modes of resonance.

ii) Coupled Cavities. The above discussion of single cavities
has shown the difficulty in estimating the effective damping,

so that the theory presented here is not able to predict
consistently accurate values of absolute SPL close to resonant
frequencies. However, the main purpose of the present study is
to examine the relative SPL between coupled cavities, and it is
now shown that sound transmission between resonating cavities

is almost independent of the damping for most cases of practical
interest. Consider, for example, the case of two coupled
cavities with L, = 31.9 cm, = 31.1 cm, = 1 ¢mand b

0.5 cme The frgquency responge was calculaqed for this cgge
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using two widely differing values of K, K = 30 and K = 3.83.

(Equation (2.28) gives K = 3.83 for b = 1 cm and 4.52 for b =

0.5 cm. The lower value was chosen for comparison with K = 30).
Measurements were made at positions 2 and 4 (ie one probe in
each cavity), in the range 50 to 630Hz. The computed pressure
ratio Py /A, is plotted in Figure 10 for these values of K,
together wEth the measured values. The maxima of pu/ba shown
in Figure 10 should not be confused with the resonant
frequencies (which are marked on the graph as £o0 oo fh)’ The
peaks are due to antiresonances, defined by the occurrence of
minima in p.. In the high frequency range (500 to 630Hz) the
difference getween the predictions for the two values of K is
too small to be plotted, so only one line is shown on the graph.
In the low frequency range (S50 to 200Hz) the difference between
the predictions is seen to be small except in the vicinity of
the antiresonance. (No results are presented in the range 200
to SO0Hz because of the absence of resonances in that range).
The explanation for the dependence of p /? on K is given later
in this section, where a simplified model gf coupled cavities is
presented. The main point to note here is that, over most of
the frequency range, including the resonant frequencies, the
relative SPL between the cavities is virtually independent of
the damping, at least in the range 3.83 £ K 30. The true
effective value of K for this case lies somewhere between these
two extremes. This is seen from the measured maximum of p /b
in the low frequency range (13.5dB at 82Hz), which lies betwegn
the two theoretical values for the low and high values of K.

In the case of a very small opening (b, = 1mm), measurements
were attempted for the case of a single cavity with L, = 63.6 cm,
but the internal pressure levels were very low and co&ld not be
measured accurately, so no estimate of the effective value of K
could be made. Furthermore the values of T/d (=3) and 4/D
(= 0.0175) lie well outside the ranges for which equation (2.38)
is judged to be valid. Thus no reliable data are available from
which to predict the effect of viscosity on relative SPL when
the size of opening is very small. It may be that viscosity
has a significant effect in such cases, but this size of opening
is not of great practical interest, so the investigation of very
small openings was not pursued further.

It should be noted that, although the damping is unimportant
in determining the relative SPL between resonating cavities when
the size of the connecting opening is of the order of 1 cm or
more, the absolute levels in the cavities depend critically on
the damping. When the system is excited at any fixed frequency,
a steady state is reached when the rate of energy dissipation
balances the nett input from the driving wave. If K is very
small a high value of acoustic velocity must be attained in the
mouth before the dissipation rate balances the input. This
produces a correspondingly large SPL inside each cavity, even
though the ratio of the acoustic pressures in the cavities is
virtually independent of viscosity.

Returning now to Figure 10, it is seen that the agreement
between theory and experiment is generally poor, and cannot be

BBl Rooloinkin Bl

VS T R R




o e e g8 4
vt S

. 3 ’n .-"- L l:,

Y T

A= ek haricing

r

i N EhaiCi e S g A ARttty = —————
. Ralamey s R R - W T ———— g

improved by an appropriate choice of K. However, if the
effective mass of fluid in the lower opening is allowed to vary
from the static value of A{wb})T, , calculated on the basis
of the geometric opening thickness, then considerably improved
agreement can be obtained. This can be seen from Figure 11,
where pu/b is plotted against frequency for different values

of effectife mouth thickness T,, with K = 10. In the low
frequency range predictions aré shown for T. = 6 mm (the
geometric value), for T, = O, and for the ifitermediate value
of‘té = 2.4 mm. Good agleement is obtained with the measurements
when“the latter value is used. In the high frequency range,
covering the third and fourth resonances, good overall agreement
is obtained with = O« By letting the effective opening
thickness vary as slown in Figure 11, improved agreement is also
obtained between measured and predicted resonant frequencies.
This is illustrated in Table 4 below.

f1 fz f3 f#
Measured Value (Hz) 57 148 559 591
Theory, T,=0 63 161 557 590
Theory T, = 2.4 m 60 152 557 583
Theory T, = 6 mm 56 146 556 577

TABLE 4 Measured and Predicted Resonant Frequencies of

Coupled Cavities with b, = 1 em, b2 = 0.5 cm,
L1 = 31.9 cm, LZ = 31,1 cm,
The most marked effect of setting to zero is to reduce the

error in the predicted value of f, from 14Hz to 1Hz. The
frequency of the third mode is virtually independent of T_,, and
the errors in prediction of f, and f_ are not greatly altgred

when 'tz is reduced from 6 um1to Z.hzmm.

The above results, together with those presented in
Figure 11, show that the effective mouth thickness (ie the
effective mass of fluid in the opening) is to some extent
frequency dependent, and is not simply equal to the geometric
value. This is not altogether surprising in view of the
approximate treatment of the motion in the mouth, which is
regarded as that of a rigid piston.

The measured responses of the individual microphones at
positions 2 and 4 are plotted in Figure 12, together with
theoretical predictions for which K was arbitrarily set equal to
10. The overall agreement is considered reasonable in view of
the approximations discussed earlier.

The same trends are observed with all the coupled cavity
cases, s0 no other case is presented in detail. Agreement
between theory and experiment improves when the effective mass
of fluid in the opening connecting the cavities is reduced from
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its static value, and in each case the relative SPL between the
cavities is virtually independent of viscosity except near an anti=-
resonance.

(d) Simplified Theoretical Model.

The theory presented in Section 2(b) is valid over a wide range of
frequencies, but suffers from the deficiency of being too complex for
easy interpretation of some of the results. It was therefore felt worth-
while to develop a simpler model capable of easier interpetation, even
though its range of validity would be confined to low frequencies. The
model is simply an extension to coupled cavities of the classical
Helmholtz resonator. The system is therefore represented as a series of
masses and springs, as illuastrated in Figure 4 below.

V'J Pi

- —— -

Ma, Ay

FIGURE 4 SIMPLE MODEL OF TWO COUPLED CAVITIES WITH RIGID WALLS
The notation is as follows:

mouth area

effective mass of fluid in mouth

acoustic pressure

displacement of fluid in mouth (positive upwards)
damping coefficient

cavity volume

<K 'Y 8 >

The subscripts 1 and 2 refer to the upper and lower cavities as in
Section 2(b), and are no longer related to the probe microphone positions.
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The pressure is assumed to be uniform throughout each cavity, so the model
is valid only for acoustic wavelengths which are large in relation to the
cavity dimensions.

Let the mass m, in the upper opening be subject to an oscillating
driving pressure Poe Then the equation of motion of m, is written as

2
Z, |
m, i‘tl = A!(F|-Po) - YliTz ’ (2.29)

where the damping force is assumed to be linear in the velocity, as in the
previous model. Similarly, the equation for m, is

2 dZ,
m, itzz1 = Az(P;_“P,) - X2. d—t—— ) (2.30)

The displacement of the fluid masses in the cavity openings gives rise to
corresponding volume changes AV, , AV_ of the fluid in each cavity. The
pressure changes in each cavity are reiated to these volume changes by

o= -4ay, = ~£ElAZ -7y (2.31)
1 i

o 1 _ = fc? (2.32)

P2 = % &V = T oE (A:Z.) . 2:32

If the pressures and displacements are now assumed all to vary as emt,

then substitution of (2.31) and (2.32) into the equations of motion of
the masses gives

_m,w’z‘.’-ab’, wZ, + ﬁleCz[‘q‘z.“Azzz] = -A‘Pc , (2.33)
1

-, wZ, + LYy wZ,+ R:fc"(%‘;*“\t)zl- ﬂ%ﬁzz' =0.

Setting (2 ' 34‘)
2
A = Av{,cz—m'wz*""wb’l )
p: A:/Cl(‘o" '\"/';) ‘mzwl +‘-wx2. )
)
the solution for Z1 and Z2 is given by
z= ~Hbp Zz = - A, P (A.A,_/’c") , (239
, r\ l-' \/,
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where r' = o( p - (ﬁlﬁ‘z&)z .

The acoustic pressures P4 and p > are then found from

2
B = le/ocz( Alfcz-' m:_f«)l‘l' (w Xz) )

Po nv, V,
(2.36)
o (AA P
P "V, Vy
The pressure ratio between the cavities is therefore given by
o= oe Va (-mwi+iwd,) . (2.37)

P2 APt

A number of features of the solution can immediately be deduced from the
above expressions. Firstly, the pressure ratio p,/p. is independent of
all quantities associated with the upper cavity. Hefice variations in
the effective mass or damping at the upper opening do not affect the
relative SPL between the cavities. Also there are two resonant
frequencies,defined by minima of "‘]. For lightly damped systems these
frequencies may be found by setting ¥, = XZ = 0 and solving the
equation [' = O, which is a quadratic in ¢2€

It can be seen from (2.37) that |p1/§2| has a minimum at the
frequency given by

2
2 - Az /C-’.
m; Vv,
At this frequency we have
P w¥V,

E m£n= sz/acl

= Y 2
Az Fe
That is, the displacements Z, and 2

UJ * (2-38)

AZ, '+ wazvn . (2.39)

’ and

ArZy

in the cavity mouths are almost in
phase (if ¥3<< ] ) and have ampligudes such that the volume displacements
Ajz and A222 are almost equal. This gives rise to a corresponding
minimum of P,y which is seen from (2.39) to be proportional to . If
there were no damping at all in the lower opening, Z, and Z2 woulg be
exactly in phase at this frequency, giving p, = O. %his explains the
trend shown in Figure 10, where the predictea maximum pressure ratio
between positions 4 and 2 is seen to be much greater for K = 3.83 than

for K = 30,

It is of interest to carry out some calculations, based on this
simple model, for the case examined in detail in the previous section.
That is, coupled cavities with b1 = 1 cm, b2 = 0.5 cm, L1 = 31.9 cm




and L, = 31.1 cm. The cavity volumes and opening areas are then given by
V, = 3273 x 1072m® | V= 3:19)x 1073 m?,
1_ A‘ = 3.]41){!0“4’ml ) A,_'-"- 7-8S'4x\o'5-mz.

- The sqund speed is taken as 342.4 m/sec, corresponding to a temperature
;- of 18°C. The effective fluid mass in each opening is found in the usual
manner for Helmholtz resonators [7]. That is, we write

f m.=,/2A;T. , (a.ko')

- where the effective mouth thickness Ti is found from

E!_ T. = T, + 1€ b | (2.41)
- 3w
4 If T, is taken as 2.4 mm (ie the effective low frequency value deduced

. - in th& previous section), then equation (2.38) predicts that the minimum
i of p, occurs at 82Hz. This agrees well with experiment, as can be seen
- from Figure 10. (If T, is taken as 6 mm, (2.38) gives a frequency of
: 71Hz, which is rather lgw). The resonant frequencies, with . = 2.4 mm,
- are predicted to be 62Hz and 148Hz. These values agree well with the
. first two measured resonant frequencies of 57Hz and 148Hz. The measured
. maximum value of p./p, is seen from Figure 10 to be apout 13.5dB. Using
! this value in equa iod (2.39) gives ¥, = 1.125 x 10~* kg/sec. The
system response may now be calculated. Figure 13 shows the measured and
computed ratio of lower to upper cavity pressure in the low frequency
range ( € 200Hz). Agreement is seen to be good, indicating that the -
simple model is adequate for predicting relative sound pressure levels
between cavities at low frequencies. At high frequencies the model
breaks down, since the existence of higher modes of resonance is not
recognised.

3. FLEXIBLE-WALLED CAVITY SYSTEM

(a) Experiment

An experimental programme is currently being carried out with the
object of investigating flow excited resonance in cavities having
flexible walls, with water as the fluid medium. The essential features
of the model used in these experiments are sketched in Figure 5 below,

{
r' I
I m External
- 1 Apertures
i < -8 m —_

[ FIGURE 5 ILLUSTRATION OF COUPLED CAVITY SYSTEM USED FOR REC TESTS
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The model is fabricated from 6émm thick steel plat~ and contains three
cavities, separated by internal bulkheads as shown in the diagram. The
volumes of the cavities are given approximately by V., = 0.045 m3,

1
VZ = 0.14 m3, V3 = O.41 m3., The three volumes are thus approximately in

the ratio V1:V2:V3 = 1:3:9, Circular apertures Aij are shown connecting

the cavities. The subscripts i and j are chosen so that Aij is an

A12 and A31 are 5 cm in diameter, while

the diameter of A23 is 10 cm. Each of these apertures can be blanked

off by a covering plate if required in order to reduce the coupling
between the cavities. It is of course not possible to isolate the
cavities from each other completely because the internal plating is not
perfectly rigid. Furthermore there are a number of small holes in the
horizontal internal plate which cannot be blanked off. These are
necessary to ensure complete flooding of the model when it is immersed

in water. In addition to the internal apertures A, . there are a number
of external openings connecting the cavities with tle exterior. Three of

these are labelled as Ay A2 and A3 in Figure 5. (There are in fact six

external openings in the model, one connecting with V_ , two with V_ and
three with V_, as shown. However, for the purpose of the present étudy
it is not neéessary to consider the details of all six openings, so only
three are labelled here, one to each volume). The area of each opening
can be varied by the insertion of various plates, which can be used to
block off the whole or part of any opening.

opening connecting Vi and Vj.

The cross-sectional shape of the structure is a NACA 0024 profile,
which is a suitable shape for towing in the Rotating Beam Channel (RBC)
at Teddington. Towing speeds of up to 12m/sec are employed in the
experiment, in which resonances of the system are excited via flow over
the external apertures. The internal sound spectra are measured by three
hydrophones, one in each cavity. It is also possible to measure
vibrations of the cavity walls by means of three accelerometers, which
can be fixed magnetically to various parts of the plating. No measure-
ments have been made of sound spectra outside the model since the REC,
being an annular channel with concrete walls, does not readily lend
itself to measurements of radiated noise.

Various resonant frequencies of the system can be excited by varying
the towing speed and the sizes of the external apertures. In all cases
the resonant frequencies observed are less than 200kz, and most are
between 10 and 100Hz. The full details of the system response as a
function of towing speed, for various configurations of the external
openings, are to be described in a later report. In this study we are
concerned with only one aspect of the response, namely the relative SPLs
between the three cavities in the model. As in the case of the rigid
walled cavities, a description is given of the theoretical model of the
system before proceeding to a discussion of experimental results.

(b) Theoretical Model
In view of the complexity of the structure shown in Figure 5 a

rigorous solution of the wave equation is not feasible without recourse
to a sophisticated technique such as the Finite Element method. Such an

T




approach is not considered justified in the present case since the aim of
this study is to produce the simplest theory capable of describing the
essential features of the system and of predicting the general trends
observed. High accuracy is not required. The success of the simplified
model of two coupled cavities with rigid walls, presented in Section 2(d),
leads to the expectation that a similar approach should successfully
predict the main features of a more complex system with flexible walls,
provided always that the acoustic wavelength A is large compared to the
physical dimensions of the system. In the present case all the resonances
excited by the flow are less than 200Hz, giving A> 7.3 m. The largest
dimension of the model is 1.8 m. Hence the acoustic pressure must be
approximately in phase throughout any individual cavity in the frequency
range of interest. The essential differences between the model described
here and that of Section 2(d) are the inclusion of wall flexibility and
the neglect of viscous damping. The latter has been shown not to be an
important factor in determining the relative SPL between resonating
coupled cavities.

The notation used in the theory is definei below.

V' : L ] — _
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FIGURE 6 ILLUSTRATION OF NOTATION FOR THEORETICAL MODEL OF COUPLED

CAVITIES

¢, = sound speed in water

€y = sound speed in air

Pu = density of water

Pa = density of air

vi = ith cavity (i = 1,2,3). Also used for numerical value of the
volume of ith cavity

Ai = area of external opening

Si = area of plating external to Vi

Py = acoustic pressure in Vi

§ = volume fraction of air”in Vi

m, = effective mass of oscillatilig fluid in aperture Ai

Ki = stiffness of plating of area Si
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effective mass of plating of area S,

M =
Fi = external force applied to fluid ia irea Ai
x, = displacement of mass m,
i = displacement of plate 5
A = area of internal opening connecting V. and V
S;j = area of plating between V. and V, * J
u.j = effective fluid mass in ofening 4.
Kfj = stiffness of plating of area S, . 1
Hig = effective mass of plating of arda Sij
x.% = displacement of mass m, .
y}q = digplacement of plate 53,
1] . 1)

The sign convention is as follows: p. is positive for an increase in
pressure, and X,y y; are positive for &@n outward displacement. x.. and
y. ; are positive fof a displacement from volume i towards volume:j J
aid Fi is positive for a force tending to displace my outwards.

Each area of plating is represented as a simple one-dimensional
oscillator having only one resonant frequency. This is of course a great
simplification of the full equations governing the plate motions,
particularly since the external plating areas S,, S_, and S, are each
comprised of both curved and flat portions haviﬁg dfstinct3oscillatory
characteristics. However, if the natural frequencies of the plating are
significantly greater than the resonant frequencies of the overall system
(as is the case here), then the system response is stiffness-dominated at
low frequencies and it is not important to determine accurately the
vibrational characteristics of eack separate part of the plating. This
point is discussed further in Section 3(c¢).

The equations of motion of the masses m, and m, . may now be written

as ij
m; %, = AP + Fo,(c=1,2,3), (3.1)
M 3oy = Ay (P - P;), (;igﬁ) ) (3.2)
and the equations of motion of the plating are given by
My + Ko = Sipe -3
Mip Y3 + K ¥y = Sy (pe-7;). (.4)

Because of the complexity of the structure it has not been possible to
estimate added mass effects, so the induced pressure loading on the outer
surface of the plating has been ignored. Hence the RHS of equation (3.3)
containg only the internal pressure P

The above is a system of 12 equations in the 15 variables ’g’xij’
é‘i’ ;‘ij and fi. It remains to express the acoustic pressures ?i

in terms of the displacements of the plating and fluid masses. In the
following analysis, allowance has been made for the presence of air in the
cavities. (In all the experiments conducted so far the cavities have been




T

I S M AR A e ag

T

T TR ey ——— T———

completely water filled, but future work may incorporate the introduction

of known amounts of air into the system.) Let §. be the volume fraction

of air in V., at the ambient pressure, so that theé respective volumes of
vi). Now let the

air and watér in V, are V. (= §. V.) and V (=T-§.

i a i w i
total volume increase by an amount AV, under the action of the external
forces, with corresponding increments b AVa and AVw in the volumes of air
and water.

oo AVQ. + Avw - Av‘: R (305)

Now the masses of air and water remain constant, so we have A ( /’a Va) =0,

s 2 AV, + ValdAA =0 (3.6)

’

with a similar expression for the water mass.

That is, /"_%A,g_-» V_‘:A/j,: -AvV; . G

The pressure increment p. is related to the density changes A /Oa and
A /w by the equations

2 2
P = €, Af = Cu A/, Iy
where isentropic expansion has been assumed. Hence (3.7) gives
Vo po 4 Y B o —AV;
S CE for Cw

which is written in terms of Si as

, (3.8)

8¢ 1= &
v. . [—-—-‘—— + - S - — AV'
2 2 ¢
28 V= lir Ci
The volume increments AV. are written in terms of the displacements
xi. yi etc. That is,

(3.9)

AV, = A‘OC' + A\lez-A‘blxal + Slyl + Suyll-sm y;; 3(3.10)

with similar expressions for AV2 and AVB. This completes the system
of 15 equations.

It is now assumed, in the usual manner, that all quantities vary as
e y where @ is the radian frequency of the forcing terms F_(t).
Substituting emfor the time dependence in equations (3.1) Yo (3.4)
gives

X; = —(A pi+ F)/miw®,
- AL;(P;- P")/mijwzy (3.11)

X =

: Yo = Sipf(Ke = Miw?),

- 5= Sep (- 7;)/(Keg = Moz w?) .
. ”




When these expressionsare substituted into (3.9) the acoustic pressuresin
the cavities can be determined as functions of frequency in terms of the
amplitudes and phases of the forcing terms by solving the resulting
system of three linear equations. Phase differences between the E} can
be allowed for by the inclusion of factors €% , where i

4 ida
phase angle.
The effective masses m and m_ . are found using the usual
approximation for Helmholtz™ resonstbrs [7) . That is,
m;=/2 AT, my=AATy, (3.12)
_ where T. (or T..) is the effective thickness of an opening. If the
‘ gcometr%c thickNess is small in relation to the diameter,'l‘i is given by
t
t'.
5 T, = 0-76JA: . (3.13)
X
g This equation is equivalent to (2.41) in the case of a circular opening.

= It is strictly meant to apply only when there is no external flow. The
! presence of a non-zero flow past an external opening effectively reduces
the reactance at the opening (81, so that m, would be smaller than the
value found from equations (3.12) and (3.13). However, no attempt has
been made here to model the relationship between flow speed and
effective fluid mass.

At the resonant frequencies of the system, the acoustic pressures,
found from equations (3.9) to (3.11), become infinite, since no damping
has been included. However, the ratio of acoustic pressures between
cavities remains finite at resonance, and it is these pressure ratios
with which the present theory is principally concerned. The following
section contains a discussion of some of the experimental results
obtained to date, together with corresponding theoretical predictionse.

(¢) Comparison of Theory and Experiment

i Since the external excitation of the RBC model is provided by water

' flow over the external openings rather than a variable frequency driving

: wave, it is not possible to measure frequency responses in the same manner
as for the rigid walled cavity system. Resonant frequencies excited by
the flow appear as well-defined lines in the acoustic spectrum, having
levels well above the background. -At frequencies away from resonance the
high level of background noise makes accurate measurement impossible, so
in this section attention is concentrated on the system response at
resonance, which is in any event the situation of greatest practical
interest.

L A A

—p
P

One of the most noticeable features of the experimental results was
the fact that very large differences in SPL were sometimes observed between
adjoining cavities, even though the internal apertures Ai' were uncovered,
thus providing a direct fluid path between any twg cavitids of the system.
For example, in the case A1 = A, =0, A2 = 169 cm® (gee Figure 6), a
resonant frequency of about 30HZz was excited for towing speeds of 7 m/sec
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and above. (The resonant frequency was speed dependent to some extent,
varying from 26Hz at 7 m/sec to 32Hz at 11 m/sec because of the
cecreasing reactance of the opening.) The highest SPL at this frequency
was recorded in V.. This level was about 6dB above the level in V_, but
as much as LOdB agove the level in V_,. The theory described in thg
preceeding section should be capable3o£ predicting this type of behaviour
provided that the essential features of the system have been included in
the model and that appropriate estimates are made of the effective masses
and stiffnesses of the various parts of the structure. Impact response
tests in air, in which the vibrational response of the structure was
recorded after striking the model, indicate a lowest plate structural
resonant frequency of about 170BHz., When the model is immersed in water
the plate resonances are subjected to two opposing factors. These are

(a) the effect of the external fluid, which is equivalent to an added

mass and tends to reduce the structural frequencies, and (b) the effect

of the internal fluid, which for low frequencies acts like a massless
spring and therefore tends to increase the structural frequencies by

means of "added stiffness'". Approximate calculations indicate that, for
this model, the added stiffness is the dominant factor, so that the
structural frequencies in water should be greater than those measured in
air, at least for the lowest modes. It is therefore expected that the
structural response below 100Hz is dominated by stiffness and is virtually
independent of mass. That is, it is not essential to choose the effective
masses M. and M, . accurately in order to obtain a satisfactory model of
the low-%requen%; response. The values of M, and M. . were therefore
specified simply as the static masses of the’relevafif areas of plating,
calculated for steel of 6 mm thickness. The numerical vglues used are

as follows, with all masses in kg and surface areas in m<,

S, = 0.49, S, = 1.4k, S, = 3.36, S, = 0.16, S, = G.l, S5,=C 3

M1 = 23.3, MZ = 67.9, M3 = 158.‘4’, M12 = ?.L}, Mg,‘ = 18, M31 = 6e1e
It remains to specify the effective stiffnesses K and Kj 4 These were
chosen on the basis of experimentally determinea resonaht frequencies
using the following procedure. With the internal apertures A, . blanked
off, the model was towed at a range of spezds for three separa

geometric configurations, defined by

1

2 - —
(i) A, = 64 cm“, A, = A3 =0
.. _ pd _ _
(ii) A, = 169 cm®, A3 =A =0
- 2 _ _
(iii) A3 = 484 cm®, A, = A2 = O.

The lowest resonant frequency of the system was measured in each case,

and was assumed to be a Helmholtz resonance of the appropriate cavity.

The mean measured frequencies were approximately S6Hz, 25Hz and 114z for
configurations (i), (ii) and (iii) respectively. The stiffnesses of the
cavity boundaries were then chosen in order to force agreement between
measured and predicted values for the above configurations. The resulting
values of K. and Kij (in kg/sec?) are shown below.

K1 =4 x 108, K2 =4 x 108, K3 = 2.4 x 108

K12 = 10 7, K23 = 3x 107, K31

These values of plate stiffness were then held constant for subsequent
calculations. The test of the validity of the theory lies in its ability
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to predict resonant frequencies and relative sound pressure levels for
the fully coupled system, when the internal blanking plates are removed.

(ie Ai.;h 0). Theoretical results for this case, with a number of
. differeﬁt external apertures, are tabulated below. For these calculations
1 the mass of fluid at the external opening was found from (3.12) and (3.13).
4 Area of opening ) Resonant frequency (Hz)
h A,1 AZ A3 f1 f2 f3
¢ 64 o o 55 2h 81
g 0 169 0 6.0 33 60
9 o) 0 113 | 7.8 2k 60
y 0 0 484 | 11 ' 2b 60

TABLE 5 Calculated Resonant Frequencies of Coupled Cavity System.

The theory is not capable of predicting resonant modes beyond the third,
since the model contains only three degrees of freedom, corresponding to
the three coupled cavities. Each mode corresponds to a different
combination of phase relationshipsbetween the oscillatory motions in the
various openings (ie in phase or out of phase). The system should
therefore be regarded as a generalised Helmholtz resonator, having three
modes of vibration. A system with n cavities would have n modes. There
are, in general, no simple numerical relationships among the natural
frequencies for any given configuration.

The frequencies shown in Table 5 above are very different from those
predicted for a rigid walled cavity system. For example, in the case
A, = 64 cm2, a calculation in which the flexibility of the plating is
ignored produces resonant frequencies of 65, 250 and 468Hz. Representa-
tion of wall flexibility is therefore essential in a structure such as
3 this, with water as the fluid medium. The effects of non-rigidity of

the walls would of course be much less pronounced in air.

We consider now the measured resonant frequencies of the coupled

- system, and compare them with the predictions of Table 5. In the case

A_ = 64 cm? a strong resonance was excited in the range 79-88Hz. This

4 appears to correspond to the predicted third mode at 81Hz. (It has
already been mentioned that the observed resonant frequencies varied

3 somewhat with towing speed. The figures of 79Hz and 88Hz represent the
f frequency limits of the observed resonange.) In this casé no lower mode
- was excited, but in the case A, = 169 cm a resonance was excited in the
frequency range 26-32Hz. This“corresponds closely with the predicted
second mode at 33Hz. In only one case was the lowest mode excited

] strongly. This was with A, = 484 cmz, when two resonances were observed,
in the ranges 11-16Hz and 21-2hﬂz. For this configuration the predicted
’ frequencies are 11, 24 and 60Hz. The third mode was not observed. For
- a somewhat lower value of A, (113 =m2) only the second mode was excited,
t' at 20-28Hz. The predicted gecond resonant frequency is 24Hz for this

! case. Overall agreement between predicted and measured resonant
frequencies is therefore seen to be quite good, bearing in mind the
simplicity of the theoretical model.

- The resonant frequencies shown in Table 5 were all found using
g equations (3.12) and (3.13) for the mass of fluid at the external opening,
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but this is known to be inadequate in the presence of a flow past the
opening since the effective mass decreases with increasing flow speed
[8]. Thig effect is simulated simply by carrying out a series of
calculations in which m, is varied, all other parameters being held
constant. For example,In the case A, = 64 cm2, a reduction in m_, from
0.5 kg (the value given by (3.12))to10.35 kg, leads to an increase in

the predicted resonant frequency of the third mode from 81Hz to 88Hz.

The observed variation was 79~88Hz. The correct trend is therefore
predicted. However, no attempt has been made to formulate a relationship
between m . and towing speed. The figure of 0.35 kg for m_, is quoted
simply be%ausg it produces a resonant frequency of 88Hz, and not from any
independent functional relationship between speed and effective mass.

The same trend is observed with most of the other resonances (ie
frequency increasing as mass is reduced), but the sensitivity of a
resonant frequency to variations in the mass at the opening is of course
dependent on the particular geometry under consideration.

Agreement between measured and predicted sound pressure levels in
the three cavities is less consistent than the agreement between resonant
frequencies, although very good correlatiog is obtained in some cases.
Consider, for example, the case A_ = 64 cm<, A_ = = O. Writing I, for
the SPL in volume V., the mean prgdicted relatfve SgL values at the fhird

resonant frequency dre given by
I1 - I2 = 31dB, I1 - I3 = 53dB.

These values are virtually independent of small variations in resonant
frequency, changing by no more than I 1dB from the mean values as f
increases from 81 to 88Hz. Measured values for this case are as foilows:

f3 I1 -1 I1 - 13

(Hz) (dB) (dB)

81 28 sS4

85 35 , 52
not

87 30 measured)

The good agreement between measured and predicted values gives confidence
that the modes of oscillation measured are indeed those modelled by the
simple theory presented here. This degree of agreement is not attained
in all cases. However, in view of the approximations made the model is
considered to give a reasonable representation of the system response at
low frequencies.

It can be seen that the relative SPL between adjoining cavities can
be very large. The value of over 50dB recorded above for I, -~ I_, is not
untypical. These large differences occur even though the agoustéc wave-
length is much greater than the model dimensions, and even when there is
a direct coupling between the volumes via the internal aperture. In the
above case the highest SPL occurs in V_, which is the volume directly
adjoining opening A1 where the excitation occurs. However, this is not
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= 113 cm, A, = A_ = O.

always so. Consider, for example, the case A

At a towing speed of 10 m/sec a 28Hz resonancé is excited, Jith Eeasured
acoustic pressure differences given by I, - I = =1.7dB, I, - I_ = -7.4dB.
Thus the lowest SPL occurs in V_ even théugh ahis is the cévityato which

the excitation is applied. 5

An example of the predicted variation in relative sound pressure
levels with frequency is shown in Figure 14, for the case A_ = 169 em”.
The graph covers the range 20 to S50Hz, which includes the observed
resonance in the range 26-32Hz. Experimental values of I, - I_ and
I, - I, are shown on the same graph. Agreement is moderazely éood except
wﬁen tge towing speed reaches 10 m/sec, at which point I_ - I_ suddenly
increases from about 15dB to 40dB due to a sudden reductfon 12 I.. This
phenomenon, which is not accounted for by the simple theoreticaleodel,
will be discussed in a future report together with other aspects of the
experimental work. The simple theory cannot be expected to cope with all
the observed features of flow excited resonance in a complex structure.
It has, however, proved adequate to explain some of the interesting
features associated with a system of coupled cavities.

L, CONCLUSIONS

Theoretical models have been developed to describe the behaviour of
coupled cavities, and the predictions of the theories have been compared with
experimental results. It has been shown that viscosity is unlikely to affect
the acoustic transmission between coupled resonating cavities except in cases of
very small openings (possibly of the order of 1 mm diameter) whose length is
large in relation to the size of the opening. Although this conclusion has
been drawn on the basis of results for hard walled cylindrical cavities in air,
it is believed to bLe valid for more general configurations in air or water.

The wave equation solution for cylindrical cavities is found to agree well
with experiment and is valid for a wide range of frequencies, but suffers from
the restriction of being applicable only to the simple cylindrical geometry
used in the experiments. A simpler theory for two coupled hard-walled cavities
(not necessarily cylindrical) is found to give equally good predictions of
sound transmission between the cavities, but this simple model is valid only
for low frequencies.

In order to describe the acoustic behaviour of the system of three coupled
cavities in water for low frequencies, the simplified theoretical approach was
extended and generalised to include wall flexibility. Good agreement is again
obtained between measured and predicted natural frequencies of the system, and
the theory is found to reproduce fairly well some of the measured differences
in SPL between adjoining cavities. The inclusion of wall flexibility is
crucial to the success of this theory, since the effect of the wall properties
on the system response is particularly marked in water.

A number of interesting features have arisen from the experiments with
the three-cavity model in water. Firstly, it has been found that very large
differences in sound pressure level can occur between adjacent coupled
cavities even when there is a direct fluid path between the cavities and when
the acoustic wavelength is large in relation to the physical dimensions of the
structure., Secondly, it has been shown that the highest acoustic pressure does
not necessarily occur in the cavity adjoining the opening where the excitation
of resonance occurs via the external flow. These effects do not rely for
their existence upon the non-rigidity of the cavity structure or upon the
fluid medium being water, but it is in the experiments carried out in water
that the largest effects were observed. Differences of over 50dB in the
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sound pressure level at resonance have been observed between adjoining
cavities. A much more accurate representation of the RBC model could be made
using more sophisticated techniques such as finite elements. However, the

time and effort involved in doing this was not felt to be justified for the
purpose of the present theoretical study, which was aimed at reproducing the
gross features of the system in order to provide an explanation of the observed
behaviour.
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FORMULAE FOR THE COEFFICIENTS DEFINING THE SOLUTION TO THE HELMHOLTZ EQUATION

FOR COUPLED CYLINDRICAL CAVITIES

The coefficients An' B 0! C and the acoustic velocities U.1, IL2 giving

the solution of equations (2 17) to (2.21), are evaluated as follows.

h"’ o

2 (b,
Define 0, = Sin 72 (‘l_.s“)
n=1 /u!\ gn j’ot(g&)

f‘ —cot(/l.n.l.,/a,) R 'A“|3§

where S

E in co‘bl\.(/unl,/a,)) Aa,( £,
Ea
I oo
n= /“" 3 T (5 )
here $1n= cosec (}'nLllal) , Aa, Z €. ;

- cosech (/u..\ L,/Q,), /AQ, < $.

v -
-

R S e 1A

e R €N

-

- _ {:—cct(')nlz/a’J, ’A“z?gﬂ-

where S -
Cc&k(?a 1-,_,41), »Aaz < fa

et SO

and g = i Sm J-ll b_;:g'\)

P
|
|
}
|
|
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The mean acoustic velocities in the upper and lower openings are then given by

ol R _L[‘A (ey+9,) + z (¥-¢ §))

Wo o Kol -[ha+ik-tp[h(e+03) + 7 (¥-i8)]

Uy _ : ko —
Wo © Koy -[he, + jlx- i p[A(e, +a) +3 (¥-c 8)]

The coefficients A 0’ B and C are defined by

2us )m(/w):r(‘hsn =26 (2)T(D5) | fose
/Lnsm(»_«_L)g 7.2(3.) !

o ()T (@) - (B)exp (4427 (32 4)
Aa = /k.\smh.(z“:“)gn *(5.) Aass,

Ra =

- 2(f)u T(%s)
b= Sty Rk

o (BT (85)-w(Bexp[AL)T(8) 4 o
" M sinh (/%"'-) ¢, T.2(5.)

C,= ‘Zui(%)Itﬁsk) ’ 440.12.4,‘
" 7n sc"‘('z-'!;_—f-’* $a D‘;"(‘g,\)

In all of the above expressions, appropriate llmtzng values must be
used when n = 1, since 31 = O.
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